
Preserving The Confidentiality And Security For The Data Stored In Cloud… K. Anitha et al.,

42 | P a g e

Asian Journal of Electrical Sciences (AJES)

Vol.3.No.1 2015 pp 42-45

available at: www.goniv.com

Paper Received :08-03-2015

Paper Accepted:20-03-2015

Paper Reviewed by: 1. R. Venkatakrishnan 2. R. Marimuthu

Editor : Prof. P.Muthukumar

PRESERVING THE CONFIDENTIALITY AND SECURITY

FOR THE DATA STORED IN CLOUD

1
K. ANITHA,

2
S. ISWARYA,

3
K. VENILLA,

Final Year B.E. – CSE, Sri Aravindar Engineering College,
1
anithakarunanithi03@gmail.com,

3
yajanila94@gmail.com

ABSTRACT

The main aim of this project is to preserve privacy from the third party auditors. For preserving privacy I am going

to explore a context in this project. Remote data integrity checking is one of the important technologies in cloud

computing. Now a day’s many works focus on providing data dynamics and/or public verifiability to this type of protocols.

In existing system, it supports both features with the help of a third party auditor. In previous work, Sebe’tal proposes a

remote data integrity checking protocol that supports data dynamics. In this project, I adapt Sebe`tal’s protocol to support

public verifiability and I am going to implement the public verifiability without the help of any third party auditors. In

addition, the proposed protocol produces high security than the previous system and preserves the confidentiality from the

third party verifiers. Here I am going to use RSA and HMAC algorithm for compressing and decompressing the message

in order to preserve the security and confidentiality. The data stored in the cloud is so important that the clients

must ensure it is not lost or corrupted. Thus by means of a formal analysis, I show the correctness and security of the

protocol. After that, through theoretical analysis and experimental results, I demonstrate that the proposed protocol has a

good performance.

Key Terms — Data integrity, Data dynamics, Public verifiability, Privacy.

I . INTRODUCTION

Storing data in the cloud has become a modern trend. An

increasing number of clients store their important data in

remote servers in the cloud, without leaving a copy
in their local computers.

In this paper, we have the following main

contr ibutions:

• We propose a remote data integrity checking protocol
for cloud storage, which can be viewed as an adaptation

of Sebe‟etal‟s protocol [1]. The proposed protocol inherits

the support of data dynamics from [1], and supports

public verifiability and privacy against third- party

verifiers, while at the same time it doesn‟t need to use a

third-party auditor.

• We give a security analysis of the proposed protocol,
which shows that it is secure against the untrusted

server and private against third party verifiers.

• We have theoretically analyzed and

exper imental ly tested the efficiency of the protocol.

Both theoretical and experimental results demonstrate

that our protocol is efficient.

Sometimes the data stored in the cloud is so

important that the clients must ensure it is not lost or

corrupted [2]. While it is easy to check data integrity after

completely downloading the data to be checked,

downloading large amounts of data just for checking data

integrity is a waste of communication bandwidth. Hence,

a lot of works have been done on designing remote data
integrity checking protocols, which allow data integrity to

be checked without completely downloading the data.

Remote data integrity checking is first introduced in which

independently propose RSA

based methods for solving this problem. After that

Sebe‟et al propose a remote storage auditing method

based on pre-computed challenge-response pairs.

Recently many works focus on providing three

advanced features for remote data integrity checking

protocols: data dynamics, public verifiability and privacy
against verifiers. The protocols support data dynamics at

the block level, including block insertion, block

modification and block deletion. The protocol supports

data append operation.

II .PROBLEM DEFINITION

In existing protocols data dynamics at the block level,

including block insertion, block modification and block

deletion. Protocols support public verifiability, by which

mailto:anithakarunanithi03@gmail.com
mailto:yajanila94@gmail.com

Preserving The Confidentiality And Security For The Data Stored In Cloud… K. Anitha et al.,

43 | P a g e

anyone can perform the integrity checking operation and

also support privacy against third party verifiers.

We need to design a remote data integrity checking

protocol that includes the following five functions:

SetUp, TagGen, Challenge, GenProof and CheckProof.

SetUp(1
k
) → (pk, sk): Given the security parameter k,

this function generates the public key pk and the secret

key sk. pk is the public to everyone, while sk is kept secret

by the client.

TagGen(pk, sk, m) → Dm : Given pk, sk and m,

this function computes a verification tag Dm and makes

it publicly known to everyone. This tag will be used for

public verification of data integrity.

Challenge(pk, Dm) → chal: Using this function, the

verifier generates a challenge chal to request for the

integrity proof of file m. The verifier sends chal to the
server.

GenProof (pk, Dm , m, chal) → R: Using this function,

the server computes a response R to the challenge chal.

The server sends R back to the verifier.

CheckProof (pk, Dm , chal, R) → {“success”,

“failure”}: The verifier checks the validity of the

response R. If it is valid, the function outputs “success”,

otherwise the function outputs “failure”. The secret key

sk is not needed in the CheckProof function.

There are two security requirements for data integrity

checking protocol:

 Security against the server with public

verifiability.
 Privacy against the third party verifiers.

III . PROPOSED SYSTEM

I propose a remote data integrity checking protocol for

cloud storage, which can be viewed as an adaptation of

Sebe` et al.‟s protocol[5]. The proposed protocol inherits

the support of data dynamics, and supports public

verifiability and privacy against third-party verifiers,

while at the same time it doesn‟t need to use a third-party

auditor. I give a security analysis of the proposed
protocol, which shows that it is secure against the

untrusted server and private against third party verifiers.

In this section, protocol supports data dynamics at the

block level. In following we show how our protocol

supports block modification. In our proposed system we

are going to implement RSA algorithm for generating

Random ID for the users which is useful to avoid hacking

from others.

Also we are going to implement the HMAC algorithm for

supporting the above said data dynamics concept in well
secured manner whish gives high confidentiality,

authentication and privacy from third party verifiers[7].

IV . IMPLEMENTATION OF HMAC

A. MAC

MAC stands for Message Authentication Code. It's

basically a checksum for data going though in secure

channel.

When using MAC, two parties, e.g. Alice and Bob need to

share a secret key K, and agree with some MAC

algorithm in the first place. If Alice sends a message M to

a Bob, Alice first passes the message and the shared

secret key K into the MAC algorithm, thus to generate a

MAC code MAC (M, K). Alice then sends Bob the

message M along with the MAC (M, K). After receiving

M and MAC (M, K), Bob generates his own MAC code

on top of the message M he received plus the shared

secret key K (using the same MAC algorithm), and

verifies that the MAC code he generated matches the one
sent by Alice.

A general step-by-step process of how a generic MAC

function works can be described as following:

1. Sender sends Message & MAC (Message, K), M1.
2. Receiver receives both parts.

3. Receiver makes his own MAC (Message, K), M2.

4. If M2! = M1, data has been corrupted.

5. If M2 == M1, data is valid.

B. HMAC

HMAC stands for Hash-based MAC. It works by using an

underlying hash function over a message and a key.

HMAC generates a Message Authentication Code by the
following formula:

HMAC(M) = H[(K+opad) & H[(k+ipad) & M]]

M = Message
H[] = Underlying Hash function

K = Shared Secret Key

opad = 36hex, repeated as needed

ipad = 5Chex, repeated as needed

& = concatenation operation

+ = XOR operation

The HMAC (M) is then sent as any typical MAC(M) in a

message transaction over insecure channels (See section
1). Again, any hash function can be used, but MD5 and

SHA-1 seem to be most popular.

C. Uses of HMAC

Speed is the main reason. Hash functions are much faster

than block ciphers such as DES and AES in software

implementation. However, HMAC, as a cryptographic

mechanism, is repudiatable. That is, Bob cannot

demonstrate that data really came from Alice -- both a

sender and a receiver can generate an exactly same

HMAC output (so Bob could have made the data

Preserving The Confidentiality And Security For The Data Stored In Cloud… K. Anitha et al.,

44 | P a g e

Cloud

himself). This is unlike digital signatures which only the

sender can generate.

D. System Architecture
The above figure 1 shows the architecture diagram of the

proposed system. It performs five different processes as

shown below.

i. Create Request

ii. Random ID Generation

iii. Send Data to Cloud

iv. Send Patient Data Request
v. Received Patient Details

 1 2 3 4 5

Fig 1. System Architecture

E. Module Descriptions
The proposed system of my project consists of 5 modules.

They are

 Login

 Cloud Random Word Generation
 Treatment

 Branches Controls

 Security

i. Login

In this module I designed the Login screen where user or

authenticated hospital branch can get user id, password

from cloud. If they have created user ID, they can update

data to cloud. If new user wants to get access from cloud

they must register about the branch. While registering the

client, server will provide the user id and that id will be

unique for each user.
ii. Random Word Generation

In this module I have designed the server which randomly

generate the words, at the same time all the other

processes also handling in this module. The processes of

the server are update the word to each patient, register the

patient details, add the server entry in routing table,

generate the word for next entity, the KEA1-r and the
large integer factorization assumptions, the proposed

protocol is secure against the untrusted server[3].

iii. Treatment

After getting the Random word the branches can update

all data to cloud under the random id, the doctor„s are

going to update all treatment under the random id, if the

patient goes any other same hospital branch they can

easily get treatment through random id, the hospital

doctor can get data from cloud without third person

verification.

iv. Branches Control

All branches don‟t control cloud. The cloud is control all
branches, In this module I designed the server which

randomly generate the words, at the same time all the

other processes also handling in this module. After getting

the Random word the branches can update all data to

cloud under the random id, the doctor„s are going to

update all treatment under the random id, if the patient

goes any other same hospital branch they can easily get

treatment through random id, the hospital doctor can get

data from cloud without third person verification[4].

v. Security

All patients are getting new random id but the large
integer factorization assumptions, the proposed protocol

is secure against the UN trusted server, literature. The

main issue is how to frequently, efficiently and securely

verify that a storage server is faithfully storing its client's

(potentially very large) outsourced data. The storage

server is assumed to be untrusted in terms of both security

and reliability.

V . CORRECTNESS AND SECURITY ANALYSIS

In this section, we first show that the proposed protocol is

correct in the sense that the server can pass the verification

of data integrity as long as both the client and the

server are honest. Then we show that the protocol is secure

against the untrusted server. These two theorems together

guarantee that, assuming the client is honest, if and only if

the server has access to the complete and uncorrupted

data, it can pass the verification process successfully.
Finally we show that the proposed protocol is private

against third party verifiers[9].

Theorem 1: If both the client and the server are

honest, then the server can pass the verification

successfully.

Theorem 2: Under the KEA1-r and the large integer

factorization assumptions, the proposed protocol is secure

against the untrusted server.

KEA1-r (Knowledge of Exponent Assumption):

Hospital

Branch Y

Hospital

Branch X

Data Base

Patient Patient

Preserving The Confidentiality And Security For The Data Stored In Cloud… K. Anitha et al.,

45 | P a g e

For an adversary A taking input (N, g, gs) and (C,Y) with

Y = Cs, there exists “extractor” which given the same

input as A return c such that C = gc.

Theorem 3 : (Privacy against Third Party

Verifiers)Under the semi-honest model, a third party

verifier cannot get any information about the client‟s
data m from the protocol.

VI . DATA DYNAMICS

The proposed protocol supports data dynamics at the

block level in the same way as [1]. In the following

we show how our protocol supports block modification.

Due to space limitation, we describe the support of block

insertion and block deletion in the full version.

Block Mod i fic a t i on : Assume that the client wants to
modify the ith block mi of her file. Denote the modified

data block m*. Then the server updates mi to m*. Next

client computes a new block tag for the updated block,

i.e., D* = gm* mod N.

From the above we can see that the correspondence
relationship between the block and the digest does not

change after the data updating, i.e., Di = gmi mod

N, i = 1, 2, ..., ×|m|/l . So the data integrity is still

protected. If the client wants to make sure that the
file has really been updated, she can launch a proof

request immediately by sending a challenge to the

server. Any block that is updated is given a novel
random number, so that each block remains unique.

Therefore, the server cannot delete any block without

being detected.

VII . CONCLUSION AND FUTURE WORK

I propose a lightweight and non-path-based mutual

anonymity protocol for P2P systems, Rumor Riding (RR)

protocol. Employing a random walk concept, RR issues

key rumors and cipher rumors separately and expect that

they meet in some random peers. The results of trace-

driven simulations and simple implementations show that

RR provides a high degree of anonymity and outperforms
existing approaches in terms of reducing the traffic

overhead and processing latency. I also discuss how RR

can effectively defend against various attacks. Future and

ongoing work includes accelerating the query speed,

introducing mimic traffic to confuse attackers, and

optimizing the k and L combination to further reduce the

traffic overhead. I will also investigate other security

properties of RR, such as the unlinkability, information

leakage and failure tolerance when facing different

attacks. It would also be interesting to explore the

possibility of implementing this lightweight protocol in

other distributed systems, such as grid systems and ad-hoc
networks. I aim to achieve data level dynamics at minimal

costs in future work.

REFERENCES

1. Ateniese. G, Burns. R, Curtmola. R, Herring. J,

Kissner. L, Pe- terson. Z and Song. D. (2007)

„Provable data possession at untrusted stores‟ in

CCS‟07, (New York, NY, USA), pp. 598–609.

2. Ateniese. G, Di Pietro. R, Mancini. L. V and Tsudik.

G. (2008) „Scalable and efficient provable data
possession‟ in SecureComm‟08, ACM.

3. Chaum. D. (1981) „Untraceable Electronic Mail

Return Addresses and Digital Pseudonyms‟ Comm.

ACM, Vol. 24, No. 2, pp. 84-90.

4. Curtmola. R, Khan. O, Burns. R and Ateniese. G.

(2008) „MR-PDP: Multiple-Replica Provable Data

Possession‟ in ICDCS‟08, IEEE.

5. Erway. C, Ku pc u. A, Papamanthou. C and

Tamassia. R. (2009) „Dynamic provable data

possession‟ in CCS‟09, pp. 213–222, ACM.

6. Reiter. M. K. and Rubin. A. D. (1998) „Crowds:

Anonymity for Web Transactions‟ ACM Trans.
Information and System Security, Vol. 1, No. 1,

pp. 66-92.

7. Rivest. R, Shamir. A, and Adleman. L. (1978) „A

Method for Obtaining Digital Signatures and Public-

Key Cryptosystems‟ Comm. ACM, Vol. 21, No. 2,

pp. 120-126.

8. Sebe. F, Domingo-Ferrer. J, Martinez-Balleste. A,

Deswarte. Y and Quisquater. J. J. (2008)

„Efficient remote data possession checking in critical

information infrastructures‟ IEEE Trans. on

Knowledge a n d d a t a Engineering, Vol. 20, pp.
1034 –1038.

9. Sherwood. R, Bhattacharjee. B and Srinivasan. A.

(2002) „P5: A Protocol for Scalable Anonymous

Communication‟ Proc. IEEE Symp. Security and

Privacy, pp. 58-70.

10. Xiao. L, Xu. Z, and Zhang. X. (2003) „Low-Cost and

Reliable Mutual Anonymity Protocols in Peer-to-

Peer Networks‟ IEEE Trans. Parallel and

Distributed Systems, Vol. 14, No. 9, pp. 829-840.

11. Zhuo Hao, Sheng Zhong and Nenghai Yu (2011) „A

Privacy – Preserving Remote Data Integrity

Checking Protocol with Data Dynamics and Public
Verifiability‟ IEEE Transactions on Knowledge

and Data Engineering, vol. 23, no. 9, pp. 1432-

1437.

12. I. Damgård, “Towards practical public key

systems secure against chosen ciphertext

attacks,” in CRYPTO‟91, Springer-Verlag, 1992.

13. Z. Hao, S. Zhong, and N. Yu, “A privacy-

preserving remote data integrity checking

protocol with data dynamics and public verifiabil-

ity,” SUNY Buffalo CSE department technical

report 2010-11, 201

http://www.cse.buffalo.edu/techreports/2010-11.pdf.

